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1. Ordered Pair, Cartesian Product

Let X be a set. Let a, b ∈ X. Then {{a}, {a, b}} ⊆ ℘(X), where ℘(X) is the
set of all subsets of X, known as power set of X. We denote the set {{a}, {a, b}}
by (a, b) and call it an ordered pair. Thus (a, b) ∈ ℘(℘(X)).

Proposition 1.1. (a, b) = (b, a)⇔ a = b.

Proof: Suppose that (a, b) = (b, a). Then {{a}, {a, b}} = {{b}, {b, a}}. Since
{a, b} = {b, a}, {a} = {b}. Hence a = b. Clearly a = b implies (a, b) = (a, a) =
(b, a). 2

Observe that (a, a) = {{a}, {a, a}} = {{a}, {a}} = {{a}}. Let X and Y be
sets. Then the set

X × Y = {(a, b) | a ∈ X and b ∈ Y }

which is a subset of ℘(℘(X ∪ Y )) is called the Cartesian product of X and Y .

Proposition 1.2. Let A , B and C be sets. Then

(1) (A ∪B)× C = (A× C) ∪ (B × C).
(2) (A ∩B)× C = (A× C) ∩ (B × C).
(3) (A−B)× C = (A× C)− (B × C).

Proof: We have the following equivalences:

(x, y) ∈ (A ∪B)× C ⇔ x ∈ A ∪B and y ∈ C

⇔ (x ∈ A and y ∈ C) or (x ∈ B and y ∈ C)

⇔ (x, y) ∈ (A× C) or (x, y) ∈ (B × C)

⇔ (x, y) ∈ (A× C) ∪ (B × C)

This proves (i). Similarly the rest can be proved.

Proposition 1.3. A×B = ∅ ⇔ A = ∅ or B = ∅.

Proof: If A = ∅, then (x, y) ∈ A × B ⇒ x ∈ ∅ and y ∈ B. Since x ∈ ∅ is a
contradiction (x, y) ∈ ∅ × B is also a contradiction. Hence ∅ × B = ∅. Similarly
A×∅ = ∅. Conversely suppose that A 6= ∅ and B 6= ∅. Then ∃x ∈ A and ∃y ∈ B.
Thus (x, y) ∈ A×B and hence A×B 6= ∅. 2

1
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2. Relations

Definition 2.1. Let A,B be any two sets. Then a subset R of A× B is called a
relation from A to B. Let (a, b) ∈ R then we write aRb and we read a is related
to b. The set Dom R = {a |(a, b) ∈ R} is called the domain of R and the set
Range R = {b |(a, b) ∈ R} is called the range of R respectively.

Example 2.2. (1) ∅ and A×B are subsets of A×B. Thus these are relations
from A to B.

(2) If either A or B is empty then there is only one relation from A to B. This
relation is called an empty relation.

(3) If |A| = m and |B| = n then there are 2mn relations from A to B.
(4) If A = {a, b, c} and B = {1, 2} then R = {(a, 1), (b, 1)} is a relation from

A to B. Observe that Dom R = {a, b} and Range R = {1}.
If R is a relation from A to B then R−1 = {(b, a) |(a, b) ∈ R} is a relation from

B to A. This relation is known as inverse relation of R.
Let R and S be relations from A to B. Then R

⋃
S, R

⋂
S and R − S are

subsets of A×B and hence they are relations from A to B.

3. Composition of Relations

Let R and S be relations from X to Y and Y to Z respectively. We define SoR
as follows:

SoR = {(x, z) ∈ X × Z | ∃y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S}
SoR is called the composition of R and S. Clearly it is a relation from X to Z.

Example 3.1. Consider A = {1, 2, 3}, B = {a, b, c} and C = {x, y, z}. Let R =
{(1, a), (2, b), (3, c)} and S = {(a, x), (a, y), (b, z)}. Then SoR = {(1, x), (1, y), (2, z)}.
Definition 3.2. Let X be a set. A subset R of X ×X is called a relation on X.

Example 3.3. ∅ and X ×X are relations on X. If X is an empty set then there
is only one relation which is ∅.
Example 3.4. 4 = {(x, x) | x ∈ X} is a relation on X called the diagonal
relation on X.

Example 3.5. Let X = {a, b, c}. R = {(a, b), (b, a), (a, c)} is a relation on X.

Example 3.6. Let X be a set. Let R = {(A,B) | A,B ∈ ℘(X) and A ⊆ B} is a
relation on ℘(X).

Proposition 3.7. Let R, S and T be relations on X. Then (RoS)oT = Ro(SoT ).

Proof: We have the following equivalences:

(x, y) ∈ (RoS)oT ⇔ ∃z ∈ X such that (x, z) ∈ T and (z, y) ∈ RoS

⇔ ∃z, u ∈ X such that (x, z) ∈ T, (z, u) ∈ S and (u, y) ∈ R

⇔ ∃u ∈ X such that (x, u) ∈ SoT and (u, y) ∈ R

⇔ (x, y) ∈ Ro(SoT )

This proves the result.2
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Proposition 3.8. If R is any relation on X, then Ro4 = R = 4oR.

Proof: Since (x, x) ∈ 4∀ x ∈ X, therefore (x, y) ∈ Ro4 ⇔ (x, y) ∈ R. Thus
Ro4 = R. Similarly R = 4oR.2

Proposition 3.9. Let R, S and T be relations on X. Then

(1) Ro(S
⋃

T ) = (RoS)
⋃

(RoT ).
(2) Ro(S

⋂
T ) ⊆ (RoS)

⋂
(RoT ).

(3) (R
⋃

S)oT = (RoT )
⋃

(SoT ).
(4) (R

⋂
S)oT ⊆ (RoT )

⋂
(SoT ).

Proof: We have the following equivalences:

(x, y) ∈ Ro(S
⋃

T ) ⇐⇒ ∃z ∈ X such that (x, z) ∈ S
⋃

T and (z, y) ∈ R

⇐⇒ ∃z ∈ X such that ((x, z) ∈ S and (z, y) ∈ R)

or ((x, z) ∈ T, (z, y) ∈ R)

⇐⇒ (x, y) ∈ (RoS) or (x, y) ∈ (RoT )

⇐⇒ (x, y) ∈ (RoS)
⋃

(RoT )

This proves 1. Similarly one can prove the other results 2

Example 3.10. Let X = {a, b, c}. Let R = {(a, b), (a, c)} and S = {(b, c), (b, b)}.
Then RoS = ∅ and SoR = {(a, c), (a, b)} = R. Thus, RoS need not be
equal to SoR. Observe that R = SoR = 4oR but S 6= 4. Next, if T =
{(a, a), (b, c), (b, b)} 6= 4, then RoT = {(a, c), (a, b)} = R = ToR but T 6= ∆.
Thus RoT = R = ToR need not imply that T = 4.

Definition 3.11. Let R be a relation on X. Then the relation

R−1 = {(x, y) ∈ X ×X | (y, x) ∈ R}
is called the inverse of R.

Example 3.12. Let R = {(a, b), (a, c)} be a relation on X = {a, b, c}. Then
R−1 = {(b, a), (c, a)}. Observe that RoR−1 = {(b, b), (c, c)} and R−1oR = {(a, a)}.
Thus, RoR−1 6= R−1oR.

Proposition 3.13. Let R and S be relations on X. Then (R−1)−1 = R and
(RoS)−1 = S−1oR−1.

Proof: Clearly (x, y) ∈ R ⇔ (y, x) ∈ R−1 and (y, x) ∈ R−1 ⇔ (x, y) ∈
(R−1)−1. Thus R = (R−1)−1. Next, let (x, y) ∈ (RoS)−1. Then (y, x) ∈ RoS.
Hence ∃z ∈ X such that (y, z) ∈ S and (z, x) ∈ R. Thus ∃z ∈ X such that
(x, z) ∈ R−1 and (z, y) ∈ S−1 and so (x, y) ∈ S−1oR−1. Similarly (x, y) ∈ S−1oR−1

implies that (x, y) ∈ (RoS)−1. This proves (RoS)−1 = S−1oR−1.2

Definition 3.14. A relation R on X is called

(1) reflexive if (x, x) ∈ R ∀x ∈ X or equivalently 4 ⊆ R.
(2) symmetric if (x, y) ∈ R⇒ (y, x) ∈ R or equivalently R−1 = R.
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(3) antisymmetric if (x, y) ∈ R and (y, x) ∈ R =⇒ x = y or equivalently
R
⋂

R−1 ⊆ 4.
(4) transitive if (x, y) ∈ R and (y, z) ∈ R =⇒ (x, z) ∈ R or equivalently

RoR ⊆ R.

Example 3.15. Let X = {a, b, c} and R = {(a, a), (b, b), (c, c), (a, b), (b, c), (c, b)}.
Then R is reflexive but none of the rest of the three.

Example 3.16. Let X = {a, b, c} and R = {(a, b), (b, a)}. Then R is symmetric
but none of the rest of the three.

Example 3.17. Let X = {a, b, c} and R = {(c, b), (a, c)}. Then R is anti-
symmetric but none of the rest of the three.

Example 3.18. Let X = {a, b, c} and R = {(a, b), (b, a), (a, a), (b, b), (a, c), (b.c)}.
Then R is transitive but none of the rest of the three.

Example 3.19. Let X = {a, b, c} and

R = {(a, a), (b, b), (c, c), (a, b), (b, a), (b, c), (c, b)}.
Then R is reflexive , symmetric but neither anti-symmetric nor transitive.

Example 3.20. Let X = {a, b, c} and R = {(b, c), (c, b), (b, b), (c, c)}. Then R is
symmetric and transitive but neither reflexive nor anti-symmetric.

Remark 3.21. (a). If a relation R on X is symmetric and transitive then it is
reflexive.

(b). The relation which is reflexive, symmetric and anti-symmetric is the diago-
nal relation. Thus, a reflexive, symmetric and anti-symmetric relation is also
transitive.

3.1. Equivalence Relations.

Definition 3.22. A relation R on X which is reflexive, symmetric and transitive
is called an equivalence relation. Let R be an equivalence relation on X and
x ∈ X. Then the subset [x] = {y ∈ X | (x, y) ∈ R} is called the equivalence class
of X modulo R determined by element x. Since R is reflexive, (x, x) ∈ R∀x ∈ X
and hence x ∈ [x]∀x ∈ X. In other words [x] 6= ∅.

Proposition 3.23. Let R be an equivalence relation on X. Then

(i) [x] = [y]⇔ (x, y) ∈ R.
(ii) [x] 6= [y]⇐⇒ [x] ∩ [y] = ∅.

Proof: (i). Suppose that [x] = [y]. Since R is an equivalence relation, y ∈ [y] =
[x]. Hence (x, y) ∈ R. Conversely, suppose that (x, y) ∈ R. Let z ∈ [x]. Then
(x, z) ∈ R. Since R is symmetric and transitive therefore (x, y), (x, z) ∈ R gives
(y, z) ∈ R; that is, z ∈ [y]. This proves that [x] ⊆ [y]. Interchanging x and y, we
get [y] ⊆ [x]. Thus [x] = [y].

(ii). If [x]∩ [y] 6= ∅, then there exists z ∈ [x]∩ [y] and so (x, z), (z, y) ∈ R. Since
R is transitive, (x, y) ∈ R. It follows from (i) that [x] = [y]. Thus, [x] ∩ [y] = ∅.
2
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Definition 3.24. Let X be a set. A subset ℘ of the power set of X is called
a partition of X if (i) union of members of ℘ is X i.e ∪A∈℘ = X and (ii)
A,B ∈ ℘,A 6= B ⇒ A ∩B = ∅.

Corollary 3.25. If R is an equivalence relation on X then ℘R = {[x] | x ∈ X} is
a partition of X.

Proof: Since x ∈ [x]∀x ∈ X (for R is reflexive), union of members of ℘R is X.
Also [x] 6= [y]⇒ [x] ∩ [y] = ∅. Thus ℘R is a partition. 2

Thus, the partition ℘R is the partition determined by the equivalence relation
R. The set ℘R is also denoted by X/R and is called the quotient set of X modulo
R.

Proposition 3.26. Let ℘ be a partition of X. Define a relation R℘ = {(x, y) |
∃A ∈ ℘ such that x, y ∈ A} = ∪A∈℘A × A. Then R℘ is an equivalences relation
such that ℘R℘ = ℘.

Proof: Since union of members of ℘ is X, given x ∈ X, x ∈ A for some A ∈ ℘.
Hence (x, x) ∈ R℘∀x ∈ X. Thus R℘ is reflexive. Suppose that (x, y) ∈ R℘. Then
∃A ∈ ℘ such that x, y ∈ A and so y, x ∈ A. Hence (y, x) ∈ R℘. Thus R℘ is
symmetric. Suppose that (x, y) ∈ R℘ and (y, z) ∈ R℘. Then ∃A ∈ ℘ and B ∈ ℘
such that x, y ∈ A and y, z ∈ B. Since y ∈ A∩B,A∩B 6= ∅. Further since ℘ is a
partition, A = B. Hence x, z ∈ A ∈ ℘. Thus (x, z) ∈ R℘. This shows that R℘ is
transitive. Next R℘

x is the member A of ℘ such that x ∈ A. Hence ℘R℘ = ℘. 2

Proposition 3.27. R℘R = R for every equivalence relation R.

Proof: Suppose that (x, y) ∈ R. Then x, y ∈ [x] ∈ ℘R. Hence (x, y) ∈ R℘R .
Suppose that (x, y) ∈ R℘R . Then ∃Rz ∈ ℘R such that x, y ∈ Rz. Hence ∃z ∈ R
such that (x, z) ∈ R and (y, z) ∈ R. But then since R is symmetric and transitive,
(x, y) ∈ R. Thus R = R℘R . 2

Remark 3.28. Every partition ℘ of X determines an equivalence relation R℘ such
that X/R℘ = ℘ and conversely. Thus every partition can be realized faithfully as
an equivalence relation and every equivalence relation can be realized as a partition.

Example 3.29. Let R be a relation (not necessarily equivalence) on X.Define
Rx = {y ∈ X | (x, y) ∈ R}. Suppose that ℘ = {Rx | x ∈ X} is a partition
of X. Can we infer that R is an equivalence relation? No. For example take
X = {a, b, c}, R = {(a, b), (b, c), (c, a)}. Then Ra = {b}, Rb = {c}, Rc = {a}.
Thus {Ra, Rb, Rc} is a partition of X where as R is not an equivalence relation(it
is neither reflexive nor symmetric nor transitive).

Example 3.30. Let ℘ ⊆ ℘(X) (not necessarily a partition). Define a relation
R℘ on X by (x, y) ∈ R℘ ⇐⇒ ∃A ∈ ℘ such that x, y ∈ A. Suppose that R℘

is an equivalence relation. Can we infer that ℘ is a partition? Again, no. For
example take ℘ = {{a, b}, {b, c}, {c, a}} ⊆ ℘(X) where X = {a, b, c}. Then clearly
R℘ = X ×X is an equivalence relation.

EXERCISES
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(1) Find the number of relations on a set containing n elements. Ans.2n2
.

(2) Let X = {a, b, c}, R = {(a, b), (b, c), (c, a)} and S = {(a, a), (a, c), (b, b)}.
Find out (i)R

⋃
S, (ii)R

⋂
S,(iii) RoS, (iv) R−1.

(3) Find out the number of reflexive relations on a set containing n elements.
Hint . A reflexive relation on X ×X can be written as ∆

⋃
S where S ⊆

X ×X −∆.
(4) Find out the number of symmetric relation on a set containing n elements.
(5) Let R and S be equivalence relations on X. Show that RoS is an equiva-

lence relation if and only if RoS = SoR.
(6) Let X = {a, b, c, d} and

R = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (a, c), (b, a), (c, b), (c, a)}.
Show that R is an equivalence relation. Find ℘R. Can we find an other
relation S such that ℘R = ℘S? Support.

4. Partial Order Relations

Definition 4.1. Let X be a set. A relation R on X is called a partial order relation
if it is reflexive, anti-symmetric and transitive. Usually a partial order relation is
denoted by ≤. A pair (X,≤) where ≤ is a partial order relation on X, is called a
Partially ordered set(Poset). Note that if a ≤ b but a 6= b then we write a < b.

Example 4.2. Let Y be a set and X = P(Y ), the power set of Y . Then the
inclusion relation ⊆= {(A,B) | A ⊆ B} is a partial order relation on X. Thus,
(X,⊆) is a partial ordered set. Note that the inverse (converse) of a partial order
is also a partial order. Thus, ⊇ is also a partial order on X.

Example 4.3. Let X = {a, b, c, d}. Then the relation

R = {(a, a), (b, b), (c, c), (d, d), (a, b), (c, d)}
is a partial order relation on X.

Example 4.4. Let (X,≤) be a partially ordered set and Y a subset of X. Then
the induced relation on Y is also a partial order on Y which is denoted by ≤Y .
Thus, ≤Y =≤ ∩(Y × Y ) and (Y,≤Y ) is a Poset.

Example 4.5. The divisibility relation ≤ on N defined by a ≤ b if and only if
a divides b is a partial order relation on N. This relation is denoted by /. Thus
(N, /) is a Poset. The relation ≤ defined by a ≤ b if and only if a is less than b is
not a partial order relation.

Definition 4.6. Let (X,≤) be a Poset. Then any two elements a, b of X are said
to be comparable if either a ≤ b or b ≤ a. A partial order ≤ on X is called a
total order or linear order if every pair x, y of elements in X are comparable.
If ≤ is a total order on X then (X,≤) is called a totally ordered or linearly
ordered or chain. A subset Y of X is called a chain in X if the induced partial
order on Y is a total order or linear order on Y ; that is, (Y,≤Y ) is linearly ordered.

Example 4.7. Let X = {a, b, c, d} and

R = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (a, c), (c, d), (a, d), (b, d)}.
Then R is a total order on X.
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Example 4.8. Let Y = {a, b, c} and X = ℘(Y ). Then the inclusion relation is a
partial order on X. The subset Z = {∅, {a}, {a, b}, {a, b, c}} is a chain in X.

Definition 4.9. Let (X ≤) be a partially ordered set and A ⊆ X. An element
u ∈ X is called an upper bound of A if a ≤ u for all a in A. Similarly, an
element l ∈ X is called a lower bound of A if l ≤ a for all a in A.

Remark 4.10. A subset of a partially ordered set need not have any upper bound
(lower bound). A subset may have several upper bounds (lower bounds) too.

For, let X = {a, b, c} and R = {(a, a), (b, b), (c, c), (a, b), (a, c)}. Then b, c are
upper bounds of Y = {a} but {b, c} has no upper bounds. Next, consider the partial
order relation S = {(a, a), (b, b), (c, c), (a, b), (c, b)}, then a, c are lower bounds of
Y = {b} but Y = {a, c} has no lower bounds.

Definition 4.11. Let (X ≤) be a partially ordered set. An element a ∈ X is
called a maximal(minimal) element if a ≤ x(x ≤ a)⇒ x = a.

In example 1.38, b and d are maximal elements whereas a and c are minimal
elements of X. Thus, there may be so many maximal or minimal elements of a
partially ordered set. Similarly, a Poset may not have any maximal or minimal
element (give examples to support it).

Example 4.12. Let X = ℘(Y ) − {Y, ∅} where Y = {a, b, c}. Then X is a par-
tially ordered set with respect to inclusion. Clearly {a, b}, {b, c}, {a, c} are maximal
elements and {a}, {b}, {c} are minimal elements.

Example 4.13. Let X = {a, b, c} and 4 = {(a, a), (b, b), (c, c)} Then 4 is a
partial order on X such that each element is maximal and also each element is
minimal.

Example 4.14. Let Y be an infinite set and X the set of all finite subsets of Y .
Then X is a partially ordered set with respect to inclusion which has no maximal
element. If we take the set Z of infinite subsets of Y then it has no minimal
elements.

Definition 4.15. Let (X ≤) be a partially ordered set. An element a ∈ X is called
the largest or last element of X if x ≤ a∀x ∈ X. An element a ∈ X is called the
least or first element of X if a ≤ x ∀x ∈ X. Observe that every largest element
in a Poset is maximal and every least element in a Poset is minimal. Note that a
Poset may or may not have first and last element. For, (N,≤) has first element but
not has last element where as (−N,≤) has last but not first. Also observe that Z has
neither first nor last but a closed interval [1, 2] has both.

Proposition 4.16. Largest (least) element of a Poset is unique provided it exists.
Proof: Suppose that (X,≤) has largest (least) element. If x1 and x2 are

largest(least) elements of X then x1 ≤ x2 and x2 ≤ x1. By antisymmetry of ≤,
x1 = x2. Thus, largest(least) element is unique. 2

Remark 4.17. It may be observed that a largest(least) element is also a max-
imal(minimal) but a maximal(minimal) element need not be the largest(least).
In example 1.38, b, d are maximal and a, c are minimal, but none of them are
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largest(least). From this Poset, it may also be noticed that largest(least) need not
exist in a Poset.

Let (X ≤) be a partially ordered set and A ⊆ X. Let U(A)(L(A)) denote the
set of upper(lower) bounds of A. (Note that U(A)(L(A)) may be empty-sets also).
Then ≤ induces a partial order on U(A)(L(A)). Note that all elements of A are
lower(upper) bounds of U(A)(L(A)). Thus, A ⊆ L(U(A))(A ⊆ U(L(A))).

Definition 4.18. The least element of U(A) (if exists) is called the least upper
bound of A. It is denoted by supA or lub A. Similarly the largest element of
L(A) is called the greatest lower bound of A. It is denoted by inf A or glb A.
If A has the largest(least) element, then that is the lub(glb) of A.

Remark 4.19. Least upper bound(greatest lower bound) need not exist even if
A has upper(lower) bounds: Let Y = {a, b, c, d} and X = ℘(Y ) − {{a, b}}.
Then ⊆ defines a partial order on X. Take A = {{a}, {b}} Then U(A) =
{{a, b, c}, {a, b, d}, Y }. Clearly U(A) has no least element. Thus A has no lub.

Theorem 4.20. Let (X ≤) be a partially ordered set. Then the following condi-
tions are equivalent.

(1). Every nonempty subset of X which has an upper bound has least upper
bound in X.

(2). Every nonempty subset of X which has a lower bound has greatest lower
bound.

Proof: (1 =⇒ 2). Assume 1. Let A be a non-empty subset of X which has
a lower bound. Then L(A) 6= ∅. Clearly ∅ 6= A ⊆ U(L(A)). Hence L(A) has an
upper bound. By 1, L(A) has the least upper bound a (say). Since a is the least
element of U(L(A)) (by the definition of lub) and A ⊆ U(L(A)), a ≤ x∀x ∈ A.
Thus, a ∈ L(A). Further if y ∈ L(A), then y ≤ x∀x ∈ U(L(A)). In particular
y ≤ a. Thus, a is the largest element of L(A). This shows that a is the glbA.

The proof of (2 =⇒ 1) is similar. 2

Definition 4.21. A partial order ≤ on X is called a complete order if every
non-empty subset of X which has an upper bound has least upper bound in X.
By theorem 1.55, conditions (1) and (2) are equivalent. Thus, a partial order ≤
on X is called a complete order if it satisfies any one (and hence both) of the
equivalent conditions of the Theorem 1.55.

Definition 4.22. A partial order ≤ on X is called a well order if every non-
empty subset of X has the least element. A pair (X,≤) where ≤ is a well order is
called a well ordered set.

Proposition 4.23. Every well order is a total order.
Proof: Let ≤ be a well order on X. Let x, y ∈ X. Then {x, y} is a non-empty

subset of X. Since ≤ is a well order, {x, y} has a least element. If x is the least
element then x ≤ y and if y is the least element then y ≤ x. This proves that
every well order is a total order. 2
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Remark 4.24. A total order need not be a well order.
Finally we state two equivalents of axiom of choice (without proof) which are

commonly used in mathematics.

Theorem 4.25. (Zorn‘s Lemma): Let (X,≤) be a non-empty partially ordered
set in which every chain has an upper bound. Then (X,≤) has a maximal element.

Theorem 4.26. (Well ordering principle): On every set there is a well order.

EXERCISES

(1) Let (X,≤) be a partially ordered set. Let A ⊆ B. Show that U(A) ⊇ U(B)
and L(A) ⊇ L(B).

(2) Show that U(A) = U(L(U(A))) and L(A) = L(U(L(A))).
(3) Show that glb need not exist.
(4) Let A ⊆ B. Show that inf B ≤ inf A and supA ≤ supB.
(5) Show by means of an example that supA need not belong to A.
(6) Show that (P(X),≤) is order complete.
(7) Give an example of a partially ordered set which is not complete.
(8) Prove the Poset X = {2, 3, 6, 12, 24, 36} with respect to divisibility rela-

tion ≤ given by x ≤ y if x divides y, has no least(first or zero)element
and last (greatest or largest) element. Also prove that 2, 3 are its min-
imal and 24, 36 are its maximal elements. What will happen if (i) X =
{1, 2, 3, 6, 12, 24, 36}, (ii) X = {2, 3, 6, 12, 24, 36, 72} and (iii) X = {1, 2, 3, 6, 12, 24, 36, 72}.

5. Product Sets and Order relation

There are a number of ways to define a partial order relation on the Cartesian
product of given two partial ordered sets. Two of these ways follow:

(1) (Product Order): Let S and T be two Posets. Then (S × T,≤) is also a
Poset where ≤ is given by

(a, b) ≤ (a′, b′) if a ≤ a′ and b ≤ b′

This order relation is known as the product order. This product relation
can be extended to the Cartesian product of finite number of Posets.

(2) (Lexicographical Order): Suppose S and T are linearly ordered sets.
Then the order relation ≤ on the product set S × T defined by

(a, b) ≤ (a′, b′) if a < a′ or if a = a′ and b ≤ b′

This order relation is called the lexicographical or dictionary order.
This order can be extended to Cartesian product S1×S2× . . .×Sn of finite
number of linearly ordered sets S1, S2, . . . , Sn as follows:

(a1, a2, . . . , an) ≤ (a′1, a
′
2, . . . , a

′
n)

if ai = a′i for i = 1, 2, ..., k − 1 and ak < a′k. Note that the lexicographical
order is also linear.
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6. Hasse diagram of Poset

Let S be a partially ordered set, and suppose a, b belong to S with a 6= b. We
say that a is an immediate predecessor of b, or that b is an immediate successor
of a if a < b but no element c in S such that a < c < b.

The Hasse diagram of a finite partially ordered set S is a pictorial represen-
tation of Poset. It is a graph whose vertices are the elements of S and there is a
edge from a to b whenever a is immediate predecessor of b with the vertex b above
the vertex a. Observe that there can be no cycles in the diagram of S since the
order relation is antisymmetric.

Sometimes we define a partially ordered set by simply presenting its Hasse
diagram. We note that the Hasse diagram of a Poset S need not be connected. It
can be illustrated by following examples:

Example 6.1. Let (A,≤) be a Poset where A = {1, 2, 3, 4, 6, 8, 9, 12, 18, 24} and
the partial order relation ≤ is defined by x ≤ y if x divides y. The Hasse diagram
of Poset (A,≤) is

1

23

469

18 12

24

Figure 1. Poset with two maximal elements and least element but
not largest element

From the figure it is clear that 18, 24 are maximal but none of them is largest
and 1 is minimal as well as least element. This element is a first element of the
Poset.

Example 6.2. Let (A,≤) be a poset where A = {2, 3, 4, 6, 8, 9, 12, 18} and the
partial order relation ≤ is defined by x ≤ y if x divides y. The Hasse diagram of
Poset (A,≤) is given by figure 2.

Example 6.3. The Hasse diagram of Poset A = {1, 2, 3, 4, 6, 9, 12, 18, 24, 36, 72}
of all divisors of 72 with respect to the divisibility relation is given by figure 3.

Example 6.4. The Hasse diagram of a Poset A = {1, 2, 3, 4} with respect to ‘less
than or equal to’ relation is given by figure 4.
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2 3

64

9

12
18

Figure 2. Poset with two maximal and two minimals but not hav-
ing least and largest element

1
2 3

4
9

6

128 18

24 36

72

Figure 3. Poset with least and last element which are minimal and
maximal respectively

1

2

3

4

Figure 4. Poset which is a chain

Definition 6.5. (Dual of a Poset) Let (X,≤) be a Poset. Define a relation ≥
on X by x ≥ y if and only if y ≤ x. Then (X,≥) is a poset (prove it). This Poset
is called as dual Poset of (X,≤) or dual of (X,≤). One may easily observe that
minimal, maximal, lower upper bounds of (X,≤) are just interchanged in dual
(X,≥).

Exercise 6.6. Find the maximal, minimal, least(first or zero) and last element of
the Posets which are given by Hasse diagrams (figure 1.3.2).
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a

b

c
d

1

2

3

4 5

6

0
2

3

4

e

f

g

h

7. Isomorphic Posets

Definition 7.1. Two Posets (X,≤1) and (Y,≤2) are said to be isomorphic if there
is a bijective correspondence f from X in to Y such that x ≤1 y if and only if
f(x) ≤2 f(y).

Example 7.2. Consider the poset X = {1, 2, 3, 4, 6, 12} with respect to divisibility
relation and the Poset Y = {21, 22, 23, 24, 25, 26} with respect to ‘less than or equal
to’ relation. Observe that both Posets have same number of elements. Since every
elements of Y are comparable but 3, 4 ∈ X are not comparable. Let f be a bijective
map from Y to X. Then there exists a, b ∈ Y such that f(a) = 2 and f(b) = 3.
Since a ≤ b but f(a) ≤ f(b) because f(a) = 2 does not divide f(b) = 3. The Hasse
diagrams of these Posets are given by figure 5.

1

3

6

2

4

12

21

22

23

24

25

26

Figure 5. Non-isomorphic Posets

Example 7.3. The Poset (X, /) where X = {1, 2, 3, 6} and the Poset (Y,⊆)
where Y = {∅, {a}, {b}, {a, b}} are isomorphic under the isomorphism f given by
f(1) = ∅, f(2) = {a}, f(3) = {b}, f(6) = {a, b}.

Exercise 7.4. Prove that the Posets given by figure 6 are not isomorphic:
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a

b c
1

2 3

Figure 6. Non-isomorphic Posets

8. Lattices

Definition 8.1. A Poset (L,≤) in which sup{x, y} and inf{x, y} exist for every
x, y ∈ L, is called a Lattice. The elements sup{x, y} and inf{x, y} are denoted by
x ∨ y and x ∧ y respectively. We call x ∨ y as the join of x and y and x ∧ y as
the meet of x and y. Thus x ∧ y = inf{x, y} and x ∨ y = sup{x, y}. From the
definition of meet and join, it follows that

x, y ≤ x ∨ y and x ∧ y ≤ x, y

Some authors also denote x ∨ y by x + y and x ∧ y by x.y.

Example 8.2. Let X be a finite set. Then the Poset (P(X),⊆) is a lattice because
for every A,B ⊆ X, we have A∨B = sup{A,B} = A∪B and A∧B = inf{A,B} =
A ∩B in P(X). If X = {1, 2} then L = P(X) = {{}, {1}, {2}, {1, 2}} is a lattice
with respect to inclusion relation ⊆. The Hasse diagram is given by figure 7.

{}

{a}
{b}

{a, b}

Figure 7. Lattice with four elements

Example 8.3. The Poset given by figure 8 is not a lattice because sup{3, 4} does
not exist as 3, 4 are not comparable.

Example 8.4. The poset A given by following Hasse diagram (Figure 9) is not
a lattice because sup{e, d} does not exist. Note that a, b, c are lower bounds with
a ≤ b and a ≤ c but greatest lower bound does not exist because b and c are not
comparable.

Exercise 8.5. Prove that the poset given by following Hasse diagram (Figure 10)
is not a lattice because neither inf{e, d} nor sup{b, c} exist.
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1

2

34

Figure 8. Poset which is not a lattice

a

b

c

d

e

Figure 9. Poset which is not a lattice

a

bc

d
e

f

Figure 10. Poset which is not a lattice

Exercise 8.6. Draw the Hasse diagram of the lattice (P(X),⊆) where X =
{1, 2, 3}.
Exercise 8.7. Prove that the set L of all divisors (factors) of 12 forms a lattice
with respect to divisibility operation.

Exercise 8.8. Prove that the sets N,Z,Q and R with respect to less than or
equal to relation ‘≤′ are lattices. Hint: sup{a, b} = max {a, b} and inf{a, b} =
min {a, b} for all a, b ∈ N.

Exercise 8.9. Prove that the poset (N, /), where / is a divisibility relation, is a
lattice. Hint: sup{a, b} = [a, b], least common multiple of a and b ; and inf{a, b} =
(a, b), the greatest common divisor of a and b for all a, b ∈ N.

Exercise 8.10. Prove that the set S(G) of all subgroups of a given group G forms
a lattice with respect to inclusion relation ⊆. Hint: sup{H,K} = 〈H ∪K〉 and
inf{H,K} = H ∩K for all H,K ∈ S(G).
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Exercise 8.11. Prove that every chain is a lattice. Hint: Let (L,≤) be a chain.
then for every a, b ∈ L we have either a ≤ b or b ≤ a. If a ≤ b then sup{a, b} = b
and inf{a, b} = a. If b ≤ a then sup{a, b} = a and inf{a, b} = b.

9. Properties

(Principle of duality): Any statement involving ∧,∨,≤ and ≥ remains true
if ∧ is replaced by ∨, ∨ is replaced by ∧, ≤ is replaced by ≥ and ≥ is replaced by
≤. If (L,≤) is a lattice then (L,≥) is a lattice. These two lattices are called dual
to each other.

Proposition 9.1. Let (L,≤) be a lattice. Then
(a) a ≤ b⇔ a ∨ b = b,
(b) a ≤ b⇔ a ∧ b = a,
(c) a ∧ b = a⇔ a ∨ b = b.

Proof: (a) If a ∨ b = b then b is an upper bound of {a, b} and so a ≤ b.
Conversely suppose that a ≤ b. Since b ≤ b also, hence b is an upper bound of
{a, b}. Since a, b ≤ u for all upper bound u of {a, b}, therefore b is least upper
bound (supremum) of {a, b} and so a ∨ b = sup {a, b} = b.

(b) If a ∧ b = a then a is a lower bound of {a, b} and so a ≤ b. Conversely
suppose that a ≤ b. Then a is a lower bound of {a, b}. Now, if l is a lower bound
of {a, b} then l ≤ a. Therefore a is a greatest lower bound, that is; a ∧ b = a.

Combining (a) and (b), we get (c). 2

Theorem 9.2. In a lattice (L,≤), we have the following:

(a) . Idempotent Law: a ∧ a = a ∨ a = a for all a ∈ L.
(b) . Commutative Law: a ∧ b = b ∧ a and a ∨ b = b ∨ a for all a, b ∈ L.
(c) . Associative Law: (a ∧ b) ∧ c = a ∧ (b ∧ c) and (a ∨ b) ∨ c = a ∨ (b ∨ c)

for all a, b, c ∈ L.
(d) . Absorption Law: a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a for all a, b ∈ L.

Proof: (a). Since sup{a} = inf{a} = a for all a ∈ L therefore a∧a = a = a∨a
for all a ∈ L.

(b). Since sup{a, b} = sup{b, a} and inf{a, b} = inf{b, a} for all a, b ∈ L, there-
fore a ∧ b = b ∧ a and a ∨ b = b ∨ a hold for all a, b ∈ L.

(c). Let a, b, c ∈ L. We claim that a ∧ (b ∧ c) = inf{a, b, c}. Let d = b ∧ c and
e = (a ∧ b) ∧ c. Since b ∧ c = d therefore d = inf{b, c} and so d is a lower bound,
i.e;

d ≤ b and d ≤ c(9.1)

Now, e = a∧ (b∧ c) = inf{a, d}, hence e ≤ a and e ≤ d. Using equation3.1, e ≤ d
and transitivity relation, we have e ≤ b, c. Thus, e ≤ a, b, c, i.e; e is a lower bound
of {a, b, c}.

Next, if f is a lower bound of {a, b, c}. Then f ≤ b, c and so f is a lower bound
of {b, c}. But d = inf{b, c} thus f ≤ d. Since f ≤ a also and hence f is a lower
bound of {a, d}. But e = inf{a, d}, then f ≤ e. This proves that e = inf{a, b, c}.

Similarly, (a ∧ b) ∧ c = c ∧ (a ∧ b) = inf{c, a, b} = inf{a, b, c}.
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Combining these two, we have (a ∧ b) ∧ c = a ∧ (b ∧ c). Using duality principle,
we have (a ∨ b) ∨ c = a ∨ (b ∨ c).

(d). Let a, b ∈ L. Since a ≤ sup{a, b} = a ∨ b, therefore inf{a, a ∨ b} = a, that
is; a ∧ (a ∨ b) = a. By duality principle, we have a ∨ (a ∧ b) = a. 2

10. Complete, Bounded and Complemented Lattices

Definition 10.1. A Lattice L is called a complete lattice if every non-empty
subset of L has its supremum and infimum in L. For example, every finite lattice
is complete. The lattices (R,≤), (Q,≤), (Z,≤) and (N,≤) are not complete. The
infinite lattice ([a, b],≤) is complete.

Definition 10.2. A lattice L is said to be bounded lattice if it has both least and
greatest element. The least and greatest element of a bounded lattice is denoted
by 0 and 1 respectively. For example, every finite lattice is a bounded lattice with
least element inf L and greatest element sup L.

Example 10.3. Let S be a non-empty set. Then the lattice (P(S),⊆) is a bounded
lattice with least element ∅ and greatest element S.

Example 10.4. The lattices (R,≤), (Q,≤), (Z,≤) and (N,≤) are not bounded.
The infinite lattice ([a, b],≤) is bounded with least element a and greatest element
b.

Proposition 10.5. Every complete lattice is a bounded lattice.

Proof: Let L be a complete lattice. Then L has both supremum and infimum
in L. Clearly inf L and sup L are least and largest element of L. 2

Example 10.6. The lattice given by figure 10 is bounded with least element a and
greatest element f but it is not complete as sup {c, b} does not exist.

Definition 10.7. A lattice is said to be a distributive lattice if the meet oper-
ation is distributive over join operation and the join operation is distributive over
meet operation, that is; if it satisfies the following property:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)(10.1)

and

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)(10.2)

for all a, b, c in L.

Example 10.8. The lattice (P(S),⊆) is a distributive lattice.

Example 10.9. The lattice given by figure 11 is non-distributive because b ∧ (c ∨
d) = b ∧ a = b where as (b ∧ c) ∨ (b ∧ d) = e ∨ e = e.

Proposition 10.10. In a lattice L, the following are equivalent:
(i). a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
(ii). a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) .
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a

b

c
d

e

Figure 11. Non-distributive lattice

Proof: Assume (i). Then

(a ∨ b) ∧ (a ∨ c) = [(a ∨ b) ∧ a] ∨ [(a ∨ b) ∧ c]

= a ∨ [(a ∨ b) ∧ c] since (a ∨ b) ∧ a = a)

= a ∨ [(a ∧ c) ∨ (b ∧ c)]

since (a ∨ b) ∧ c = c ∧ (a ∨ b)

= [a ∨ (a ∧ c)] ∨ (b ∧ c)

= a ∨ (b ∧ c) because a ∨ (a ∧ b) = a

By duality, we have (ii)⇒ (i). 2

Proposition 10.11. Let L be a bounded lattice with least element 0 and greatest
element 1. Then a ∨ 1 = 1, a ∧ 1 = a and a ∨ 0 = a, a ∧ 0 = 0 for all a ∈ L.

Proof: Let a ∈ L. Since a ≤ 1 therefore by proposition 3.12, we have a∨1 = 1
and a ∧ 1 = a. Next, since 0 ≤ a therefore a ∧ 0 = 0 and (a ∨ 0) = a (by
Proposition 3.12). 2

Definition 10.12. Let L be a bounded lattice with least element 0 and greatest
element 1.Let a ∈ L. An element b ∈ L is called a complement of a if a ∨ b = 1
and a ∧ b = 0.

Example 10.13. Consider the lattice given by figure 12:

a

b

c

d

e f

g

Figure 12. Complements in a bounded lattice

Clearly this is a bounded lattice with least element g and greatest element a. The
elements b and e are complements of d. This shows that complement of an element
is not unique. It is also noted that b and e are complements of f . From this it
follows that two elements may have same complement. Similarly complements of
b and e are d and f respectively. It is also noted that an element in a bounded
lattice may not have complement. For example, c has no complements.
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1

0

a

b

c

Figure 13. Complemented Lattice

Definition 10.14. A lattice is said to be a complemented lattice if its every
element has a complement. For example, consider the lattice given by figure 13

Complement of 0 is 1 and complement of 1 is 0. c is the complement of a and
b. Conversely a and b are complements of c. This shows that this lattice is a
complementary lattice.

Theorem 10.15. In a distributive lattice, if an element has a complement then
it is unique.

Proof: Let L be a distributive lattice and a ∈ L has complements. Suppose
that b and c are complement of a. Then a ∨ b = 1 = a ∨ c and a ∧ b = 0 = a ∧ c.
Now

b = b ∧ 1

= b ∧ (a ∨ c)

= (b ∧ a) ∨ (b ∧ c) (by 3.2)

= 0 ∨ (b ∧ c)

= (a ∧ c) ∨ (b ∧ c)

= (a ∨ b) ∧ c

= 1 ∧ c

= c

2

11. Exercises

Exercise 11.1. Draw the diagram of the lattice of factors of 20.

Exercise 11.2. Prove that the poset ({1, 2, 3, 4, 5}, /) is not a lattice, where /
denotes the divisibility relation.

Exercise 11.3. Draw the Hasse diagram for the divisibility relation on each of
the following sets:

(a). S = {3, 6, 12, 24, 48}.
(b). S = {2, 3, 6, 12, 24, 36}

12. Boolean Algebra

This algebraic structure was introduced by an English mathematician George
Boole. An important application of Boolean algebra is in the analysis of electronic
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circuits and hence in the design of a range of digital devices such as computers,
telephone systems and electronic control systems.

Definition 12.1. Let B be a non-empty set with two binary operations +and ·, a
unary operation ′, and two distinct elements 0 and 1. Then B is called a Boolean
algebra if it satisfies the following

(1) Commutative law: a + b = b + a and a · b = b · a for all a, b ∈ B.
(2) Distributive laws: a+(b·c) = (a+b)·(a+c) and a·(b+c) = (a·b)+(a·c)

for all a, b, c ∈ B.
(3) Identity laws: a + 0 = a = 0 + a and a · 1 = a = 1 · a for all a ∈ B.
(4) Complement laws: a + a′ = 1 and a · a′ = 0 for all a ∈ B.

It is denoted by (B,+, ·, ′, 0, 1). The additive identity 0 is called the zero
element, the multiplicative identity 1 is called the unit element or unity, and
a′ is called the complement of a. We frequently write bc instead of (b.c). Thus,
the distributive law becomes

a(b + c) = ab + ac and

a + bc = (a + b)(a + c)

respectively.
The operations +, ·, and ′ are called sum, product, and complement respectively.

Remark 12.2. Some authors use associativity axiom in the definition of Boolean
algebra. But it is a redundant condition (see, Theorem 4.18 ).

Example 12.3. Let B = {0, 1}, the set of bits (binary digits), with the binary
operations of + and · and the unary operation ′ defined by the following composition
table:

+ 0 1
0 0 1
1 1 1

. 0 1
0 0 0
1 0 1

and 0′ = 1, 1′ = 0.

From the composition tables, it is clear that associative law, commutative law,
identity law and complement law hold respectively. One can easily verify the dis-
tributive law. Thus, B is a Boolean algebra.

Exercise 12.4. Evaluate (i) (0 + 1).0, (ii) 0.1′, (iii) (1.1) + (0.0′) (iv)1′+ [(0.1).1]
and (v) [(0.1).1).(1′+ 1)] + 1 for Boolean algebra B = {0, 1} given in example 4.3.

Example 12.5. Let B = {0, 1} be a Boolean algebra described as in above ex-
ample. Let Bn = B ×B × . . .×B︸ ︷︷ ︸

n−times

. Define binary operations + and · component

wise using 1 + 1 = 0 + 1 = 1 + 0 = 1, 0 + 0 = 0 and 0.1 = 0 = 1.0 = 0.0, 1.1 = 1
respectively; that is,

(x1, x2 . . . , xn).(y1, y2 . . . yn) = (x1.y1, x2.y2, . . . , xn.yn)

(x1, x2 . . . , xn) + (y1, y2 . . . yn) = (x1 + y1, x2 + y2, . . . , xn + yn).

The unary operation ′ on Bn is given by

(x1, x2, . . . , xn)′ = (x′1, x
′
2, . . . , x

′
n)
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where xi ∈ {0, 1}∀i and 0′ = 1, 1′ = 0. Using Boolean properties of B, we observe
that Bn is a Boolean algebra with zero element (0, 0, . . . , 0) and unity (1, 1, . . . , 1).
We simply write (x1, x2, . . . , xn) as x1x2 . . . xn (string of n−bits). Clearly Bn has
2n elements. Take n = 3, then 111 + 011 = 111, 111.011 = 011 and (010)′ = 101.

Example 12.6. Let D(35) = {1, 5, 7, 35} be the set of all positive divisors of 35.
Define +, ·, and ′ on D(35) by a + b = [a, b] (lcm of a and b), a · b = (a, b) (Gcd
of a and b) and a′ = 35

a
. Then a + b = b + a, ab = ba, a + 1 = a, a.35 = a and

a + a′ = 35, a.1 = 1 respectively. Using composition table one may easily observe
that the associative law and distributive law holds. Thus, D(35) is a Boolean
algebra with 1 the zero element and 35 the unit element.

Example 12.7. Let D(70) = {1, 2, 5, 7, 10, 14, 35, 70} be the set of all positive
divisors of 70. Define +, ·, and ′ on D(70) by a + b = [a, b] (LCM of a and b),
a · b = (a, b) (Gcd of a and b) and a′ = 70

a
. Then a+ b = b+ a, ab = ba, a+ 1 = a,

a.35 = a and a + a′ = 35, a.1 = 1 respectively. Using composition table one may
easily observe that the associative law and distributive law holds. Thus, D(70) is
a Boolean algebra whose zero element is 1 and unity element 70.

Exercise 12.8. Show that the set of all divisors of 30 forms a Boolean algebra,
where +, . and ′ are described in above examples. What about the sets B1, the set
of all divisors of 24 and B2, the set of all divisors of 42. Also, what about the set
of divisors of 45?

Example 12.9. Let S be a non-empty set. Let P(S) be the power set of S and
′ denotes the complement operation, that is; A′ = S \ A for A ∈ P(S). Then
(P(S),∪,∩,′ , 0, 1) is a Boolean algebra whose zero element is ∅ and unity element
is S.

Example 12.10. Let B be a set of propositions which is closed under the opera-
tions of conjunction, disjunction and negation and where equality of propositions
is interpreted as their logical equivalence. In chapter 1, we observed that the op-
erations ∨ and ∧ are associative, commutative and that each is distributive over
the other. If we denote a contradiction (a proposition which is always false) by
f and a tautology (a proposition which is always true) by t. For any proposition
p belonging to B, p ∧ (−p) ≡ f and p ∨ (−p) ≡ t belong to B (by the closure
properties). Thus, t, f ∈ B. Further, for any p ∈ B, we have p ∨ f ≡ f ∨ p ≡ p
and p ∧ t ≡ t ∧ p ≡ p. Thus f and t are the identities for the binary operations ∨
and ∧ respectively. All contradictions are logically equivalent as are all tautologies
so that t and f are unique elements of B. Therefore structure (B,∨,∧,−, f, t) is
a Boolean algebra. The operations ∨ and ∧ correspond to + and . respectively.
Here f is the zero element and t is multiplicative identity.

Theorem 12.11. (Principle of duality). It states that if a result is true then
its dual is also true.

13. Properties of Boolean Algebra

Proposition 13.1. (Uniqueness of complements): In a given Boolean Al-
gebra B, a′ is unique for each a ∈ B.
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Proof: Let x and y be any two complements of a ∈ B. Then a+x = 1, ax = 0
and a + y = 1, ay = 0. Now

x = x + 0 (because x + 0 = x)

= x + ay (because ay = 0)

= (x + a)(x + y) (by distributive law)

= x + y

= y + x

= (y + a)(y + x) (because y + a = 1)

= y + ax (by distributive law)

= y + 0 = y.

2

Proposition 13.2. (Involutory law): In a given Boolean Algebra B, (a′)′ = a
for all a ∈ B.

Proof: Since a + a′ = 1 and aa′ = 0 for all a ∈ B, therefore a′ + a = 1 and
a′a = 0. By complement law, we have (a′)′ = a. 2

Proposition 13.3. (Idempotent Law): In a Boolean algebra, a + a = a and
aa = a for all a.

Proof: Let a ∈ B.

a = a + 0

= a + aa′ (as aa′ = 0)

= (a + a)(a + a′) (distributive law)

= a + a (as a + a′ = 1 and a.1 = 1)

and

a = a.1

= a(a + a′) (as a + a′ = 1)

= aa + aa′) (distributive law)

= aa (as aa′ = 0 and a + 0 = a)

This proves the result. 2

Proposition 13.4. (Boundedness law). In a Boolean algebra B, a+ 1 = 1 and
a.0 = 0 for all a ∈ B.
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Proof: Let a ∈ B. Then

a + 1 = 1(a + 1)

= (a + a′)(a + 1) (as a + a′ = 1)

= a + a′1) (distributive law)

= a + a′

= 1 (as a + a′ = 1)

a.0 = 0 + a.0

= aa′ + a.0

= a(a′ + 0)

= a.a′

= 0

2

Proposition 13.5. In a Boolean algebra B, a + a′b = a + b and a′ + ab = a′ + b
for all a, b ∈ B.

Proof: Let a, b ∈ B. Then

a + a′b = (a + a′)(a + b) (distributive law)

= 1.(a + b) (complement law)

= a + b

Replacing a by a′ and using involutory law, we have a′ + ab = a′ + b. 2

Proposition 13.6. (Absorption Law). In a Boolean algebra B, a+ab = a and
a(a + b) = a for all a, b ∈ B.

Proof: Let a, b ∈ B. Then a+ab = a.1+a.b = a(1+ b) = a, because 1+ b = b.
Since a(a+b) = a+ab as aa = a, therefore a(a+b) = a. This proves the absorption
law. 2

Theorem 13.7. (Associative law): In a given Boolean algebra B, a+ (b+ c) =
(a + b) + c and (ab)c = a(bc) holds for all a, b, c ∈ B.

Proof: Let a, b, c ∈ B. Then

a + [a(bc)] = a by absorption law

= a(a + c) by absorption law

= (a + ab)(a + c) by absorption law

= a + (ab)c by distributive law



DISCRETE MATHEMATICS-PAPER IV(E)-UNIT II 23

and

a′ + [a(bc)] = (a′ + a)(a′ + bc) by distributive law

= 1(a′ + bc)

= (a′ + b)(a′ + c) by distributive law

= [(a′ + a)(a′ + b)](a′ + c) a′ + a = 1

= (a′ + ab)(a′ + c) by distributive law

= a′ + (ab)c

Now

(ab)c = 0 + (ab)c

= aa′ + (ab)c

= (a + (ab)c) + (a′ + (ab)c)

= (a + a(bc)) + (a′ + a(bc)) using eqns. 4.1, 4.1

= (a + a′) + (a(bc)) by distributive law

= 0 + a(bc)

= a(bc)

Using the principle of duality, we have a + (b + c) = (a + b) + c. 2

Proposition 13.8. (De Morgans Law) (a + b)′ = a′b′ and (ab)′ = a′ + b′ for all
a, b in a given Boolean algebra B.

Proof: Let a, b ∈ B. Then

(a + b) + a′b′ = (a + b + a′)(a + b + b′)

= (1 + b)(1 + a) (by commutative and complement law)

= 1.1 (as a + 1 = 1∀a ∈ B)

= 1.

and

(a + b)a′b′ = (aa′)b′ + a′(bb′) (by distributive and associative law)

= 0b′ + 0a′

= 0

Thus, by uniqueness of complements, we have (a + b)′ = a′b′. Next,

(ab) + (a′ + b′) = (a′ + b′) + (ab) (by commutative law)

= (a′ + b′ + a)(a′ + b′ + b) (by distributive law)

= (1 + b′).(1 + a′) (as a + a′ = 1∀a ∈ B)

= 1.1 (a + 1 = 1 ∀a ∈ B)

= 1.

Thus, by uniqueness of complements, we have (ab)′ = a′ + b′. 2

Proposition 13.9. In a Boolean algebra B, 0′ = 1 and 1′ = 0
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Proof: By boundedness law, 1 + 0 = 1 and 1.0 = 0. Thus, by uniqueness of
complements, 1′ = 0 and 0′ = 1. 2

Remark 13.10. There is no Boolean Algebra containing 3 elements. For if, B is
a Boolean algebra having three elements, then a ∈ B such that a 6= 0, 1 and a′ = a.
But, by complement law a + a′ = 1, that is; a + a = 1 and so by idempotent law
a = 1 which is a contradiction because a 6= 1.

Proposition 13.11. In a Boolean algebra B, the following are equivalent:
(a). a + b = b, (b). ab = a, (c). a′ + b = 1, (d). ab′ = 0.

Proof: Let a, b ∈ B.
(a)⇔ (b). Assume (a). Then

a = a + ab (by absorption law)

= (a + a)(a + b) (by distributive law)

= ab (as a + a = a and a + b = b)

Next, if ab = a then a + b = ab + b = b, by absorption law. Thus (a)⇔ (b) holds.
(a) ⇔ (c). Assume (a). Then a′ + b = a′ + (a + b) = 1, by complement and

boundedness law. Next, if a′ + b = 1 then a + b = 1(a + b) = (a′ + b)(a + b) =
a′a + b = 0 + b = b.

(a) ⇔ (d). Assume that a + b = b, then ab′ = a(a + b)′ = aa′b′ = 0 because
(a + b)′ = a′b′ and aa′ = 0. Next, if ab′ = 0 then we have a + b = (a + b)1 =
(a + b)(b′ + b) = ab′ + b = 0 + b = b.

This proves the result. 2

14. Subalgebras And Isomorphisms

Definition 14.1. A non-empty set C of a Boolean algebra B is called a subalgebra
if it is itself a Boolean algebra with respect to induced operations on C. Observe
that B and {0, 1} are subalgebras of a given Boolean algebra B.

Theorem 14.2. A non-empty subset S of a Boolean algebra B is a subalgebra if
and only if a + b, ab, a′ ∈ S for all a, b ∈ B.

Proof: The proof is left as an exercise for readers.2

Theorem 14.3. A non-empty subset S of a Boolean algebra B is a subalgebra if
and only if a + b, a′ ∈ S for all a, b ∈ B.

Proof: The proof is left as an exercise for readers.2

Example 14.4. The subsets {1, 5, 14, 70} and {1, 2, 35, 70} are subalgebras of
Boolean algebra D(70), where a + b = [a, b] (lcm of a and b), a · b = (a, b) (Gcd of
a and b) and a′ = 70

a
.

Example 14.5. Let B be a Boolean algebra and a ∈ B. Then S = {0, 1, a, a′} is a
Boolean subalgebra of B. This subalgebra is denoted by 〈a〉 and is called subalgebra
generated by the element a.
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Proposition 14.6. Intersection of a family of Boolean subalgebra is a Boolean
subalgebra.

Definition 14.7. (Subalgebra generated by a subset). Let S be a non-empty
subset of a Boolean algebra B. Then the intersection of all subalgebras containing
S is the smallest subalgebra denoted by 〈S〉 and is called a subalgebra generated by
a subset S.

Definition 14.8. Two Boolean algebras B1 and B2 are said to be isomorphic if
there is a one-one onto map f : B1 → B2 such that

f(a + b) = f(a) + f(b), f(ab) = f(a)f(b) and f(a′) = f(a)′

for all a, b ∈ B1. In this case the map f is called an isomorphism.

Example 14.9. Subalgebras {1, 5, 14, 70} and {1, 2, 35, 70} of Boolean algebra
D(70) are isomorphic under isomorphism f given by f(1) = 1, f(5) = 2, f(14) =
35, f(70) = 70.

Definition 14.10. The dual of any expression in an Boolean algebra B is obtained
by replacing + y ·, · by +, 0 by 1 and 1 by 0. Thus, dual of a + bc is a · (b + c).

15. Boolean algebra as a lattice

Proposition 15.1. Let B be a Boolean algebra. Define a relation ≤ on B by
a ≤ b if and only if ab′ = 0. Then (B,≤) is a poset.

Proof: Since aa′ = 0 for every a, therefore a ≤ a for every a ∈ B. This proves
the reflexivity. Next, let a ≤ b and b ≤ a. Then ab′ = 0 and ba′ = 0 and so
a = a(b+ b′) = ab+ ab′ = ab+ 0 = ab+ ba′ = b(a+ a′) = b. This proves that ≤ is
anti-symmetric.

Next, let a ≤ b and b ≤ c. Then ab′ = 0 = bc′ and so ac′ = (a1)c′ = a(b+ b′)c′ =
a(bc′) + (ab′)c′ = 0 + 0 = 0. Thus, a ≤ c. This proves that ≤ is transitive.

Thus ≤ is a partial order relation on B. 2

Theorem 15.2. Every Boolean algebra can be treated as a lattice.

Proof: Let B be a Boolean algebra. Define a relation ≤ on B as follows:

a ≤ b if and only if ab′ = 0.

By proposition 4.33, (B,≤) is a poset. Let a, b ∈ B. To prove B is a lattice it is
sufficient to prove that a + b = sup {a, b} and ab = inf{a, b}.

Since a(a + b)′ = (aa′)b′ = 0 and b(a + b)′ = a(bb′) = 0 thus a, b ≤ a + b. Next,
let c ∈ B such that a, b ≤ c. Then ac′ = 0 = bc′ and so (a + b)c′ = ac′ + bc′ = 0,
that is; a + b ≤ c. thus a + b = sup{a, b}.

Similarly (ab)a′ = 0 = (ab)b′ and if d ≤ a, b then da′ = 0 = db′ and so d(ab)′ =
d(a′ + b′) = 0. Thus ab = inf{a, b}. This proves the result. 2

Remark 15.3. The lattice whose Hasse diagram is given by 12 is not a Boolean
algebra because b and e both are complements of d (Note that complements of any
element in a Boolean algebra is unique).
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Corollary 15.4. (B,≤) is a bounded, complemented and distributive lattice with
least element 0 and greatest element 1.2

16. Representation theorem

Definition 16.1. A Boolean algebra B is said to be finite Boolean algebra if it has
finite number of elements. Let B be a Boolean algebra. Then (B,≤) is a lattice ,
where a ≤ b if and only if ab′ = 0. An element a ∈ B is said to be atom if 0 ≤ a
and there is no b ∈ B such that 0 < b < a.

By a little effort one may easily observe the following:

Lemma 16.2. If B is a finite Boolean algebra, then we have the following:
(1). for every non-zero element b ∈ B, there is an atom a such that a ≤ b,
(2). If a and b are any two distinct atoms then ab = 0,
(3). every b ∈ B is uniquely expressed as b = a1+a2+. . .+ak, where a1, a2, . . . , ak
are atoms such that ai ≤ b for all 1 ≤ i ≤ k.

Proof: Proof is left for readers.2

Corollary 16.3. The sum of all atoms in a finite Boolean algebra is 1.

This results motivates us to give the following:

Theorem 16.4. (Representation theorem) Let B be a finite Boolean algebra
and S be the set of all atoms in B. Then the map f : B → P(S) defined by

f(a1 + a2 + . . . + ak) = {a1, a2, . . . , ak}(16.1)

where a′is are atoms in B; is an isomorphism of Boolean algebras.

Proof: It is left for readers.2

Corollary 16.5. Every finite Boolean algebra has 2n elements for some n ∈ N.

Proof: The proof follows from the fact that P(S) has 2n elements, where
n = |S|.2

Exercise 16.6. Let B be a given Boolean algebra. If a ≤ b then prove that
a + bc = b(a + c) (observe that a ≤ b⇒ a + b = b).

17. Conjunctive and Disjunctive normal forms

Definition 17.1. Let B be a Boolean algebra. Then a variable which assigns
elements of B is called a Boolean variable. Throughout the chapter, we use the
word ‘variable’ for Boolean variable. The complement of a Boolean variable x is
denoted by x′.

Definition 17.2. (Literal). A literal is a Boolean variable x or its complement
x′. Thus, if x1, x2, . . ., xn are variables (Boolean) then x1, x2, . . ., xn and x′1, x

′
2,

. . ., x′n are literals. It is noted that literals x and x′ involve the same variable x.
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Definition 17.3. Consider a set of variables (or letters or symbols), say x1, x2, . . .,
xn. Then any variable or any expression which is formed from the variables using
the Boolean operations +, ·, and ′, is called a Boolean expression. It is noted that
0, 1 are Boolean expressions as xx′ = 0 and x + x′ = 1. One may easily observe
that any Boolean expression in n variables determines a function f : Bn → B
called Boolean function. In other words, a Boolean function of the n variables
x1, x2, . . . , xn is a function f : Bn → B such that f(x1, x2, . . . , xn) is a Boolean
expression.

Example 17.4. (x+y+z′)′ and xyz+x′+y are Boolean expressions in variables
x, y, and z.

Definition 17.5. (Equivalent). Two Boolean expressions are said to be equiva-
lent (or equal) if one can be obtained from the other by a finite sequence of applica-
tions of the Boolean algebra axioms. Thus, x + x′ and 1, 0 and xx′ are equivalent
Boolean expressions respectively. Similarly, x(y + z) + x + x′ and xy + xz are
equivalent Boolean expressions. Thus, it follows from the definition that
equivalent Boolean expressions define the same function. For exam-
ple; two Boolean functions f and g given by f(x, y, z) = x(y + z) + x + x′ and
g(x, y, z) = xy + xz respectively are equal.

Since a particular Boolean expression may have a number of equivalent forms,
there arises the question of how we can decide whether or not two Boolean expres-
sions are equivalent and hence whether or not two Boolean functions are equal.
Fortunately there is an alternative method of establishing the equivalence of two
Boolean expressions but, before we can consider this, we need some more defini-
tions.

Let x be a Boolean variable and e ∈ {0, 1}. We define xe as follows

xe =

{
x if e = 1
x′ if e = 0

Definition 17.6. (Minterms). Let x1, x2, . . . , xn be any n-variables. Then a
Boolean expression of the form x1

e1x2
e2 . . . xn

en, where ei ∈ {0, 1} for all i =
1, 2, . . . , n is called a minterm or complete product in n variables x1, x2, . . . , xn.
Thus, a minterm in n− variables is the product of each Boolean variable or its
complement, i.e; minterm consists of the product of n literals, one corresponding
to each Boolean variable. It is denoted by me1e2...en. Thus,

me1e2...en = xe1
1 xe2

2 . . . xen
n .

For example, m1 = x, m0 = x′ are two minterms in one variable. Similarly,
m11 = x1x2, m01 = x′1x2, m10 = x1x

′
2 and m00 = x′1x

′
2 are all minterms in two

variables x1, x2. Observe that the total number of non-equivalent minterms in n
variables is 2n. Similarly, minterm m10001 in variables x1, x2, x3, x4 and x5 is given
by

m10001 = x1x
′
2x
′
3x
′
4x5.

Of these 2n minterms, no two are equivalent. This can be verified by appropriate
substitution of the values 0 or 1 for each variable. Given two minterms, it is always
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possible to assign the value 0 or 1 to each variable so that evaluating each minterm
gives a different result. For example, consider m010 = x′1x2x

′
3 and m111 = x1x2x3.

Substituting x1 = 0, x2 = 1, x3 = 0, we have m010 = 1 and m111 = 0. Thus, m010

and m111 are not equivalent Boolean expressions.
Indeed, we have

Theorem 17.7. Of the 2n minterms in the variables x1, x2, . . . , xn, no two are
equivalent Boolean expressions.

Proof: We first note that 00 = 0′ = 1 and 11 = 1 so that, if xi = ei, xi
ei = 1.

This means that, given a minterm

m = me1e2...en = x1
e1x2

e2 . . . xn
en

substituting xi = ei for i = 1, 2, ..., n gives the product of n terms all of which
are equal to 1 and so the minterm is equal to 1. Now any other minterm contains
at least one literal which is the complement of a literal contained in m and so
substitution of the values xi = ei (i = 1, 2, . . . , n) as above results in a product
which contains at least one zero. Hence, the product is zero. We have shown that
for any two distinct minterms there is at least one set of values of the variables
for which the minterms have different values. We can therefore conclude that no
two distinct minterms are equivalent. 2

Definition 17.8. (Maxterms). A maxterm (or complete sum) in the n variables
x1, x2, . . ., xn is a Boolean expression of the form xe1

1 + xe2
2 + . . . + xen

n . Thus,
a maxterm in n variables x1, x2, . . ., xn consists of the sum of n literals. It is
denoted by Me1e2...en. Thus,

Me1e2...en =e1
1 +xe2

2 + . . . + xen
n

.

For example, M11 = x1 + x2, M01 = x′1 + x2, M10 = x1 + x′2 and M00 = x′1 + x′2
are all maxterms in two variables x1 and x2.

As with minterms, there are 2n possible maxterms in n variables and (by the
duality principle) no two of these are equivalent Boolean expressions.

18. Disjunctive normal form

Definition 18.1. A Boolean expression f(x1, x2, . . . , xn) is said to be a disjunc-
tive normal form if f is a sum of some or all of 2n minterms in all n variables.
It is sometimes called canonical (or complete) sum-of-products form



DISCRETE MATHEMATICS-PAPER IV(E)-UNIT II 29

Example 18.2. The disjunctive normal form of f(x, y, z) = x(y′z)′ + x is given
by

f(x, y, z) = x(y′z)′ + x

= x(y′′ + z′) + x1 (by DeMorgans law and x1 = x)

= x(y + z′) + x(y + y′) (by involutory lawand y + y′ = 1)

= xy + xz′ + xy + xy′ (by distributive law)

= xy + xy′ + xz′ (by idempotent law)

= xy.1 + xy′.1 + x.1.z′

= xy(z + z′) + xy′(z + z′) + xz′(y + y′) (by complement law)

= xyz + xyz′ + xy′z + xy′z′ + xyz′ + xy′z′ (by distributive law)

= xyz + xy′z + (xyz′ + xyz′) + (xy′z′ + xy′z′)

= xyz + xy′z + xyz′ + xy′z′ (by idempotent law)

Exercise 18.3. Prove that the disjunctive normal form of Boolean expression
x1x2(x1 + x3) is x1x2x3 + x1x2x

′
3

Exercise 18.4. Express f(x, y, z) = x(y′z)′ + yz into its disjunctive normal form
of f(x, y, z).

Theorem 18.5. Every non-zero Boolean expression f = f(x1, x2, . . . , xn) is equiv-
alent to a disjunctive normal form, i.e,

f(x1, x2, ..., xn) =
∑
(e)

f(e1, e2, ..., en)xe1
1 xe2

2 , ...xen
n

=
∑
(e)

f(e1, e2, ..., en)me1e2...en

where (e) denotes all possible 2n n-tuples (e1, e2, ..., en) where ei = 0 or 1 for all
i = 1, 2, ..., n. Such representation is unique (up to reordering of the minterms in
the expression).

Proof: The proof is given in [1] (see Theorem 9.10, page 449 and Theorem
9.11, page 452-453).2

Example 18.6. Using above theorem, the disjunctive normal form of x + y is
f(0, 0)x′y′ + f(1, 0)xy′ + f(0, 1)x′y + f(1, 1)xy where f(e1, e2) is given by

e1 e2 f(e1, e2) = e1 + e2
1 0 1
1 1 1
0 0 0
0 1 1

.

Thus, the corresponding disjunctive normal form is given by

x + y = 0.x′y′ + 1.xy′ + 1.xy + 1.x′y

= = xy′ + xy + x′y

.
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Example 18.7. Consider the Boolean expression f(x, y, z) = yz + xz. Then its
disjunctive normal form is

f(x, y, z) = f(0, 0, 0)x′y′z′ + f(0, 1, 0)x′yz′ + f(0, 1, 1)x′y′z′ + f(0, 0, 1)x′y′z

+f(1, 0, 0)xy′z′ + f(1, 1, 0)xyz′ + f(1, 1, 1)xyz + f(1, 0, 1)xy′z,

where the value of f(e1, e2, e3) is given by following table:

e1 e2 e3 f(e1, e2, e3) = e2e3 + e1e3
1 1 1 1.1 + 1.1 = 1 + 1 = 1
1 1 0 1.0 + 1.0 = 0 + 0 = 0
1 0 1 1.1 + 0.1 = 1 + 0 = 1
1 0 0 1.0 + 0.0 = 0
0 1 1 1.1 + 0.1 = 1
0 1 0 1.0 + 0.0 = 0
0 0 1 0.1 + 0.1 = 0
0 0 0 0.0 + 0.0 = 0

From the table, it is clear that f(e1, e2, e3) = 1 for (e1, e2, e3) = (1, 1, 1), (1, 0, 1)
and (0, 1, 1) and so minterms xe1ye2ze3 corresponding to these are xyz, xy′z and
x′yz respectively. Thus, disjunctive normal form is xyz + xy′z + x′yz.

Definition 18.8. Two or more Boolean functions are equal if and only if they
have the same disjunctive normal form.

Example 18.9. Show that f(x1, x2) = x1 +x2 and g(x1, x2) = x′1x2 +x1 are equal
functions.

Solution: Consider the following table:

e1 e2 e′1 e′2 e1 + e2 e′1e2 + e1
1 0 0 1 1 + 0 = 1 0.0 + 1 = 1
1 1 0 0 1 + 1 = 1 0.1 + 1 = 1
0 0 1 1 0 + 0 = 0 1.0 + 0 = 0
0 1 1 0 0 + 1 = 1 1.1 + 0 = 1

Since f = g for all (e1, e2) therefore their disjunctive normal forms will be same,
i.e; f(x1, x2) = g(x1, x2) = x1x

′
2 +x1x2 +x′1x2. Hence the two functions are equal.

Example 18.10. The Boolean function f(x1, x2) for which f(0, 0) = 1 = f(0, 1) =
f(1, 0) and f(1, 1) = 0 is f(x1, x2) = x′1x

′
2 + x′1x2 + x1x

′
2 and so f(x1, x2) =

x′1x2 + x′2.

19. Conjunctive normal form

Definition 19.1. A Boolean expression f(x1, x2, . . . , xn) is said to be a conjunc-
tive normal form or complete product of sums expression if f is expressed as
product of maxterms in n variables. Observe that the maximum number of max-
terms in a complete product of sums expression in n variables is 2n..

By duality principle, dual of Theorem 5.13 will be



DISCRETE MATHEMATICS-PAPER IV(E)-UNIT II 31

Theorem 19.2. Every non-identity Boolean expression f = f(x1, x2, . . . , xn) is
equivalent to a conjunctive normal form and such a representation is unique up to
order and arrangement; i.e;

f(x1, x2, . . . , xn) =
∏
(e)

[f(e1, e2, . . . , en) + x
e′1
1 + x

e′2
2 + . . . + xe′n

n ]

=
∏
(e)

(
f(e1, e2, . . . , en) + Me′1e

′
2...e

′
n

)
,

where (e) denotes all possible n− tuples (e1, e2, . . . , en) with ei ∈ {0, 1} for all
i = 1, 2, . . . , n.

Proof: The proof is left for readers.2

Since ei = 0 or 1, therefore f(e1, e2, . . . , en) is either 0 or 1. Now, 0 +x = x and
1+x = x for all x ∈ B. Thus, conjunctive normal form will be the product of only

those maxterms Me′1e
′
2...e

′
n

= x
e′1
1 +x

e′2
2 + . . .+x

e′n
n for which f(e1, e2, . . . , en) = 0. It

is illustrated by following examples:

Example 19.3. The conjunctive normal form of f(x, y) = xy′ is

[f(0, 0) + x + y][f(0, 1) + x + y′] + [f(1, 0) + x′ + y] + [f(1, 1) + x′ + y′]

where f(e1, e2) is given by the following table:

e1 e2 f(e1, e2) = e1e
′
2

1 1 1.0 = 0
1 0 1.1 = 1
0 1 0.1 = 0
0 0 0.1 = 0

Thus, conjunctive normal form is (0 + x′+ y′)(1 + x′+ y)(0 + x+ y′)(0 + x+ y) =
(x′ + y′)(x + y′)(x + y).

Exercise 19.4. Prove that the conjunctive normal form of f(x1, x2, x3) = (x1 +
x2)(x1 + x′3) is (x′1 + x2 + x3)(x

′
1 + x2 + x′3)(x

′
1 + x′2 + x′3).

Exercise 19.5. Express each of the following Boolean functions in disjunctive
normal form and hence state which of the functions are equal:

(1) f(x1, x2) = x′1x2 + x1x2,
(2) f(x1, x2) = x1,
(3) f(x1, x2) = x1(x

′
1 + x2),

(4) f(x1, x2) = x1x2,
(5) f(x1, x2) = (x1 + x2)(x1 + x2),
(6) f(x1, x2, x3) = x2(x1x3 + x1),
(7) f(x1, x2, x3) = x1 + x2 + x3,
(8) f(x1, x2, x3) = x2(x1 + x3).

Exercise 19.6. Express each of the following Boolean functions f(x1, x2, x3) in
both disjunctive and conjunctive normal forms:
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(1) x1 + x2 + x′3,
(2) x1x2 + x′3 + x1,
(3) (x2 + x3)x1,
(4) x′1x2 + x1x3.

20. Logic Gates

Definition 20.1. An electronic component, incorporated within a circuit, which
operates on one or more inputs to produce one output is called a logic gate.

There are mainly three types of logic gates: (1). OR gate (2). AND gate and
(3) NOT gate (Inverter).

Definition 20.2. The OR gate is a circuit that receives two inputs and produces
one output as shown in the figure 14(a). If x, y are inputs of OR gate, then its

x

y

z = x+ y

x
y

z = x+ y

1 1

1 0

0

0

1

0

1

1

0

1

(a)
(b)

Figure 14. OR gate

output is denoted by x + y (or x ∨ y) and is given by the truth table 14(b). Thus,

x + y =

{
0 if x = y = 0
1 otherwise

Definition 20.3. The AND gate is a circuit that receives two inputs and pro-
duces one output as shown in the figure 15(a). If x, y are inputs of AND gate,

x

y

xy

x y xy

1

1

0

0

1

0

1

0

1
0

0

0

(a)

(b)

Figure 15. AND gate

then its output is denoted by xy (x∧y) and is given by the truth table 15(b). Thus,

xy =

{
1 if x = y = 1
0 otherwise

It is noted that AND and OR gates may use more than two inputs also.

Definition 20.4. The NOT gate (inverter) is a circuit that receives one input
x and produces one output x′ as shown in the figure 16(a) where
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x x
0

1

0

0

1

x

x
0

(a)

(b)

Figure 16. NOT gate

x′ =

{
0 if x = 1
1 if x = 0

Thus, if x is an input of NOT gate, then its output is denoted by x′ (−x) and is
given by the truth table 16(b).

Definition 20.5. The NAND-gate is shown symbolically as the following:

x

y (xy)0 = x
0 + y

0

x y xy

1

1

0

0

1

0

1

0

1
0

0

0

(a)

(b)

(xy)0

0

1

1

1

The Boolean expression for its output is (xy)′. By De Morgans law (xy)′ = x′+y′.

Definition 20.6. The NOR-gate is shown symbolically as the following:

x

y

(x + y)0

The output is given by the following table:

x y (x + y)′

1 0 0
1 1 0
0 0 1
0 1 0

The Boolean expression for its output is (x + y)′. By De Morgan’s law (x + y)′ =
x′y′.

21. Logic Circuits

A circuit L which is constructed using a combination of inverters (NOT gates),
OR gates and AND gates is called a logic gate. The combination given by fig-
ure 17 is a logic circuit. From the figure it is clear that if inputs are Boolean
variables then output is a Boolean expression. Thus, every Boolean expression de-
termines a logic circuit. It is also noted that every Boolean expression determines
a logic circuit. For example, the logic circuit corresponding to Boolean expression
xyz + xz′ + yz′ is given by figure 18

Indeed, we have:
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x

y

x x
0

z

x+ y

x
0 + z

(x+ y)(x0 + z)
x

y

x
0

z

x+ y

x
0 + z

(x+ y)(x0 + z)

or

Figure 17. Same logic circuit with different representations

x

y

z

xyz

z
0

z
0

yz
0

xz
0

xyz + yz
0
+ xz

0

Figure 18. Logic circuit for xyz + xz′ + yz′

Theorem 21.1. Logic circuits form a Boolean Algebra.

Exercise 21.2. Give a Boolean expression describing the output of each of the
following logic networks:

x
y

z

x
y

z

Exercise 21.3. Design a logic network for each of the following so that the output
is described by the following Boolean expression:

(1) (x + y + z′)y′z + x,
(2) xy(z + x′) + y′.

22. Minimization of Boolean expressions and Karnaugh Maps

As we know that a non-zero Boolean expression can be expressed in disjunctive
normal forms and be reduced to a Boolean expression which involves minimal
number of variables and minimal number of terms (by successive use of absorption
law and distributive law). Such Boolean expression is said to be in minimal form.

A Karnaugh map is a diagrammatic representation of a Boolean expression in
disjunctive normal form. It consists of a rectangle divided into sub-rectangles
referred to as cells where each cell may be taken to represent a minterm. For a
given number of variables, the cells within the Karnaugh map represent all the
possible minterms which may appear in the disjunctive normal form of a Boolean
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expression. The minterms are allocated to the cells in such a way that adjacent
cells represent minterms in which all the literals are identical except for one which
is complemented in one cell but not in an adjacent one. Thus, movement around
the map from cell to cell (up or down, to left or right, but not diagonally) gives a
sequence of minterms where each is different by just one literal from the last. It is
noted that the requirement that adjacent cells differ by just one literal also applies
at the edges of the map if we view the rightmost column of cells as being adjacent
to the left-hand column and also the top and bottom rows as being adjacent.

The minterms represented by the cells in a Karnaugh map for a Boolean ex-
pression in the two variables x1 and x2 are shown in the diagram below.

x1 x
0

1

x2

x
0

2

x1x2 x
0

1
x2

x1x
0

2
x
0

1
x
0

2

x2 x
0

2

x1

x
0

1

x1x2 x1x
0

2

x
0

1
x2 x

0

1
x
0

2

Figure 19. Karnaugh map in two variables

The following is a layout for a Karnaugh map for three variables x, y and z:

x

yz

yz y
0
z y

0
z
0
yz

0

x

x
0

xz

y

y y
0

xz

xz
0

x
0
z
0

x
0
z

xyz xy
0
z xy

0
z
0

xyz
0

x
0
yz x

0
y
0
z x

0
y
0
z
0

x
0
yz

0

xyz xy
0
z

xyz
0

x
0
yz

0

x
0
yz

xy
0
z
0

x
0
y
0
z
0

x
0
y
0
z

Figure 20. Karnaugh map with three variables

A Boolean expression given as the sum of minterms (i.e. in disjunctive normal form)
is represented on the Karnaugh map by placing a one in each cell corresponding to a
minterm which is present.

The Boolean expression xyzw + xyzw′ + x′y′z′w′ + x′yz′w′ in four variables
x, y, z, w is represented by

We now illustrate the grouping by following figures:
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xy xy
0

x
0
y
0

x
0
y

zw

zw
0

z
0
w
0

z
0
w

1

1

1 1

xy
zw

Figure 21. xyzw + xyzw′ + x′y′z′w′ + x′yz′w′

x x
0

y

y
0

1 1

xy + x
0
y = y

x x
0

y

y
0

1

1

x
0

x x
0

y

y
0

1 1

1 1

1

1

1

1

1

1
minterms are not ad-

jacent so one's can

not be grouped

1 1

xy x
0
y x

0
y
0
xy

0

z

z
0

xyz + xy
0
z = xz

xy xy
0

x
0
y
0
x
0
y

z

z
0

1 1

1

x
0
y
0
z + x

0
yz = x

0
z,

x
0
yz + x

0
yz

0 = x
0
y

xy xy
0 x

0
y
0 x

0
y

z

z
0

1

1

1

1

xy(z+ z
0)+x

0
y(z+ z

0) =
y(x + x

0) = y



DISCRETE MATHEMATICS-PAPER IV(E)-UNIT II 37

1 1

1 1

xy xy
0

x
0
y
0

x
0
y

z

z

y
0
z + x

0
y
0 + x

0
z

xy

zw

zw

zw
0

z
0
w
0

z
0
w

xy xy
0
x
0
y
0

x
0
y

1

1 1

1

xyw(z + z
0) + x

0
yw(z + z

0) = yw(x+ x
0) = yw

Indeed, these four cells are adjacent in which literals x and z are com-

plemented so variables x; z vanish. Thus, grouped of these four cells

will give the simplified term yw

From above figures it follows that two adjacent ones (horizontally or vertically)
in the map imply that the Boolean expression contains the sum of two minterms
in which all the literals are identical except for one which is complemented in
one cell but not in an adjacent one. Where this is the case, this variable can
be eliminated. Similarly, it also follows that a group of four ones arranged in a
rectangular block (either 2 × 2, 1 × 4 or 4 × 1) allows replacement of four terms
by one and the elimination of two variables. In a similar way we can show that
a group of eight ones arranged in any rectangular block indicates that the eight
corresponding minterms can be replaced by a single term in which three variables
have been eliminated. In all these cases the variable or variables which remain are
those which appear unchanged in all cells constituting the block. It is important
to note that only blocks of 2, 4, 8, . . . cells lead to replacement of the
appropriate number of minterms by a single term, so it is these blocks
that we must look for in a Karnaugh map. Further, the larger the
rectangular block, the greater the reduction in terms and so we must
utilize the larger blocks where we have a choice. (In practice Karnaugh
maps become too unwieldy for Boolean expressions in more than about four variables
and other techniques for obtaining the minimal form, such as the QuineMcCluskey
algorithm, are more appropriate. See, for instance, Gersting (1999).)

Given a Karnaugh map, the following sequence of steps normally enables identifica-
tion of a minimal representation of a Boolean expression (Although the method usually
gives the minimal form, it is not absolutely foolproof and, having applied it, it is wise
to check that there is no other way of grouping the ones, which results in fewer terms
or in the same number of terms but fewer literals).

(1) Isolate any ones in the map which are not adjacent to any other ones. The
terms corresponding to these cells cannot be reduced and will therefore appear
unchanged in the minimal form.

(2) Locate any ones that are adjacent to only one other cell containing a one and
circle the pair. For each of these pairs, the two minterms corresponding to the
cells can be represented by a single term consisting of the literals common to
both.
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(3) Locate any ones which can be allocated to a block of four in only one way
and circle that block. The corresponding four terms can be represented by one
term consisting of the common literals.

(4) Locate any ones which can be allocated to a block of eight and circle that block.
The corresponding eight terms can be represented by one term consisting of
the common literals.

(5) For any cells containing a one that remain, form the largest possible rectangular
groups so that there are as few groups as possible and so that all cells containing
a one are enclosed in at least one block.

Note that the process allows for a one to be included in more than one block. This
simply means that the term corresponding to that cell is considered as being repeated
in the original Boolean expression (since b + b = b for all b ∈ B).

Example 22.1. Consider the Boolean expression x1x2x3 + x1x
′
2x3 + x1x

′
2x
′
3 +

x′1x
′
2x
′
3 + x′1x2x

′
3. The karnaugh map corresponding to given Boolean expression is

given by

x2x3
x
0

2x3 x
0

2x
0

3 x2x
0

3

x1

x
0

1

1 1

1 1

1

The corresponding minimal form is given by x1x3 + x1x
′
2 + x′1x

′
3. It can also be

grouped as

x2x3
x
0

2x3 x
0

2x
0

3 x2x
0

3

x1

x
0

1

1 1

1 1

1

Another minimal form is x1x3 +x′3x
′
2 +x′1x

′
3. This shows that minimal form

of a Boolean expression is not unique.

Remark 22.2. It can also be grouped as

x2x3
x
0

2x3 x
0

2x
0

3 x2x
0

3

x1

x
0

1

1 1

1 1

1

The corresponding reduced form is x1x3 + x1x
′
2 + x′3x

′
2 + x′1x

′
3. Clearly this is not

minimal form because it can be reduced to fewer number of terms.
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Example 22.3. Consider the Boolean expression x1x2x
′
3x4+x1x2x3x

′
4+x′1x2x

′
3x
′
4+

x′1x
′
2x3x4 + x′1x

′
2x
′
3x4 + x1x

′
2x3x4 + x1x

′
2x
′
3x4 + x1x

′
2x3x

′
4. The corresponding Kar-

naugh map is given by
x1x2

x1x2 x1x
0

2
x
0

1x
0

2 x
0

1x2
x3x4

x3x4

x3x
0

4

x
0

3x
0

4

x
0

3x4

1

1

1

1

1

1

1

The corresponding minimal form is x4x
′
2 + x1x3x

′
4 + x1x2x

′
3x
′
4.

22.1. Exercises.

Exercise 22.4. Draw Karnaugh map and find a minimal form of the following
Boolean expressions:

(1) x1x2x
′
3x4+x′1x2x

′
3x4+x′1x2x

′
3x
′
4+x′1x2x3x

′
4+x′1x2x3x4+x′1x2x

′
3x4+x′1x

′
2x
′
3x
′
4+

x1x2x
′
3x
′
4.

(2) x1x2x3x4+x1x2x
′
3x4+x′1x2x

′
3x4+x1x2x

′
3x
′
4+x′1x

′
2x
′
3x
′
4+x1x

′
2x
′
3x4+x1x

′
2x
′
3x
′
4+

x1x
′
2x3x

′
4.

(3) Draw Karnaugh map and simplify the expressions: (a). xy′ + x′y, (b).
xy′ + x′y′ and xy′ + x′y′ + xy.

(4) Is it possible to reduce the Boolean function x′y′ + xy with the help of
Karnaugh map? Support your answer.

(5) Reduce the following Boolean functions with the help of Karnaugh map:
(a). A′B′C + A′BC + ABC + ABC ′, (Ans. A′C + AB)
(b). A′B′C + A′BC ′ + ABC ′ + AB′C, (Ans. A′C + AB′C + BC ′)
(c). A′B′C ′ + A′B′C + A′BC + A′BC ′ + AB′C + ABC, (Ans. A′ + C)
(d). A′B′C+A′B′C+A′BC+ABC ′+AB′C+ABC, (Ans. A′B′+AB+C).

Exercise 22.5. Draw a Karnaugh map to represent the Boolean function AC ′ +
A′C + B.

Hint:

A

BC
BC B0C B0C 0 BC 0

A

A0

1

1

1

1

1

1

Exercise 22.6. Write the Boolean function represented by the Karnaugh map:
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A

A

A0

BC

BC BC 0
B0C 0 B0C

1 1 1

1 1 1

Also simplify it.

Exercise 22.7. Draw a Karnaugh map to represent the following Boolean func-
tions:
(a). A′B′C ′D + ACD + BD′ + AB + BC,
(b). A + B′D′.

Exercise 22.8. Draw a logic circuit to satisfy the truth table given below:

INPUT OUTPUT

A B C

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

01

1

1

1

1

0

1

0

0

0

Solution: The Boolean expression corresponding to given truth table of logic net-
work is A′B′C ′ + A′B′C + A′BC ′ + ABC. It’s Karnaugh map, minimal form and
corresponding logic circuit (network) is given by

A

A0

BC B0C B0C 0 BC 0

1

11

1

minimal form is ABC + A0B0 + A0C 0. The corre-

sponding logic network is

A

B

C

A0

B0

ABC

A0B0

ABC + A0B0 + A0C 0

1

C 0 A0C 0
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